If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-307=0
a = 1; b = 12; c = -307;
Δ = b2-4ac
Δ = 122-4·1·(-307)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-14\sqrt{7}}{2*1}=\frac{-12-14\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+14\sqrt{7}}{2*1}=\frac{-12+14\sqrt{7}}{2} $
| 10x-10=x-100 | | (3x6)+7=25 | | 2^2+16x+18=0 | | 4x+1=3x=94 | | (x+8)=(6x58) | | 58=(16x-4) | | 58=(9x-6) | | 4x+8=51 | | 4x+1=3x=149 | | 3/6=x/11 | | x+90+3x-26=180 | | 2/6=x/11 | | r=3.14 | | 5x+8+6x+7=48 | | 1.5/9=x/18 | | -3(x+3)-5=-8 | | 4x12=40+x | | Y=2p+3p² | | 2v^2-14v+16=(v-3)^2 | | 7/4=14n* | | 2x-5+61+44=180 | | 7n(7n-1)=-252 | | 17w+5=32 | | 7x-5+4x+8+3x+15=180 | | 5( | | (3x-26)=90 | | 5(3r+2)=-20 | | 132/x=33 | | 2y+4y+6y=-36(y+5) | | K2-6k=11 | | 3/4(9-500)=1/2p | | 10x-40=5x-60 |